Analysis of fMRI data by blind separation into independent spatial components.
نویسندگان
چکیده
Current analytical techniques applied to functional magnetic resonance imaging (fMRI) data require a priori knowledge or specific assumptions about the time courses of processes contributing to the measured signals. Here we describe a new method for analyzing fMRI data based on the independent component analysis (ICA) algorithm of Bell and Sejnowski ([1995]: Neural Comput 7:1129-1159). We decomposed eight fMRI data sets from 4 normal subjects performing Stroop color-naming, the Brown and Peterson work/number task, and control tasks into spatially independent components. Each component consisted of voxel values at fixed three-dimensional locations (a component "map"), and a unique associated time course of activation. Given data from 144 time points collected during a 6-min trial, ICA extracted an equal number of spatially independent components. In all eight trials, ICA derived one and only one component with a time course closely matching the time course of 40-sec alternations between experimental and control tasks. The regions of maximum activity in these consistently task-related components generally overlapped active regions detected by standard correlational analysis, but included frontal regions not detected by correlation. Time courses of other ICA components were transiently task-related, quasiperiodic, or slowly varying. By utilizing higher-order statistics to enforce successively stricter criteria for spatial independence between component maps, both the ICA algorithm and a related fourth-order decomposition technique (Comon [1994]: Signal Processing 36:11-20) were superior to principal component analysis (PCA) in determining the spatial and temporal extent of task-related activation. For each subject, the time courses and active regions of the task-related ICA components were consistent across trials and were robust to the addition of simulated noise. Simulated movement artifact and simulated task-related activations added to actual fMRI data were clearly separated by the algorithm. ICA can be used to distinguish between nontask-related signal components, movements, and other artifacts, as well as consistently or transiently task-related fMRI activations, based on only weak assumptions about their spatial distributions and without a priori assumptions about their time courses. ICA appears to be a highly promising method for the analysis of fMRI data from normal and clinical populations, especially for uncovering unpredictable transient patterns of brain activity associated with performance of psychomotor tasks.
منابع مشابه
Feature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملCORSICA: correction of structured noise in fMRI by automatic identification of ICA components.
When applied to functional magnetic resonance imaging (fMRI) data, spatial independent component analysis (sICA), a data-driven technique that addresses the blind source separation problem, seems able to extract components specifically related to physiological noise and brain movements. These components should be removed from the data to achieve structured noise reduction and improve any subseq...
متن کاملFunctional source separation improves the quality of single trial visual evoked potentials recorded during concurrent EEG-fMRI
EEG quality is a crucial issue when acquiring combined EEG-fMRI data, particularly when the focus is on using single trial (ST) variability to integrate the data sets. The most common method for improving EEG data quality following removal of gross MRI artefacts is independent component analysis (ICA), a completely blind source separation technique. In the current study, a different approach is...
متن کاملICA, kernel methods and nonnegativity: New paradigms for dynamical component analysis of fMRI data
Exploratory data–driven techniques or Blind Source Separation (BSS) methods in fMRI data analysis are neither based on explicit signal models nor on the a priori knowledge of the underlying physiological process. One such method is Independent Component Analysis (ICA) which searches for stochastically independent signals within the multivariate observations. Recently, a new paradigm in ICA emer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 6 3 شماره
صفحات -
تاریخ انتشار 1998